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Structure and dynamics of quantum clusters 

by K. BIRGITTA WHALEY 
Department of Chemistry, University of California, 

Berkeley, CA 94720, USA 

Quantum clusters are van der Waals aggregates of light atomic and molecular 
species whose behaviour is dominated by quantum delocalization and exchange 
effects. We summarize here recent theoretical and experimental studies of helium 
and molecular hydrogen clusters, focusing primarily on techniques developed to 
address the quantum nature of these systems. Indicators of superfluid behaviour are 
discussed, as well as the use of molecular probe species to study structural and 
dynamical properties. 

1. Introduction 
van der Waals bonded clusters of the lightest chemical species, namely helium, H, 

and their isotopic analogues, constitute a class of clusters with unique and unusual 
properties. Their low mass and weak binding cause them to be extensively delocalized 
even in their ground states. Both structural and dynamical properties will be influenced 
by the large quantum effects. Quantum-statistical effects may also be important for the 
pure clusters. This is most obvious for the helium isotopes, for which large differences 
between the Fermi and Bose systems are known in the bulk, but is also possible for 
molecular H, in selected spin and rotational states. Classical dynamical studies of the 
type carried out extensively in past years for heavier rare-gas clusters cannot address 
these issues. To achieve any realistic quantitative understanding of these clusters, it is 
necessary to embark on a fully quantum-mechanical description. In general, for 
clusters ranging from size N = 2 to z lo5, this is a task comparable in magnitude and in 
difficulty with the electronic structure problem. There are, however, important 
differences between the two problems. For clusters of 4He and of H, (J=O),  the Bose 
character requires a wavefunction fully symmetric instead of antisymmetric with 
respect to pair permutations. The lack of a central attractive nucleus means that, in the 
absence of impurities, the cluster wavefunction is determined solely by the interhelium 
interactions, while the electronic structure solutions are dependent on both electron- 
electron and electron-nucleus interactions. The very different nature of the van der 
Waals from the Coulomb potential makes both the detailed solutions and the energy 
scales involved very different, although for quantum clusters one can often start with 
techniques similar to those used for electronic structure. 

Both of the helium species, 3HeN and 4HeN, are of interest from a physical point of 
view and both can be made at low temperatures, either as free clusters in molecular 
beam machines (Gspann and Vollmar 1978, 1980, Buchenau et al. 1990, Goyal et al. 
1992a) or embedded in metallic matrices (Syskakis et al. 1985, 1990). Of physical 
interest are both the structural and the energy effects of the different Fermi and Bose 
statistics, as well as the finite-size scaling of collective behaviour, in particular of the 
superfluid state. The superfluid phase in bulk 4He is accessed below about 2 K while, in 
bulk 3He where pairing is required, the superfluid transition is at about 3 mK. Since the 
superfluid transition is expected to be depressed in a finite-size system (Ginsburg and 
Sobyanin 1976) the experimental conditions required to access superfluid clusters of 3He 
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42 K .  B. Whaley 

are far more extreme than for superfluid clusters of the Bose isotope 4He. Thus, while 
there is good evidence for the superfluid transition in finite bubbles of 4He enclosed in a 
solid matrix (Syskakis et al. 1985), the analogous experiment with 3He has proved 
problematic (Syskakis et al. 1990). In the free clusters formed in molecular beams which 
constitute the focus of this review, internal temperatures of the order of T d0.4 K are 
estimated (Buchenau et al. 1990). This may well allow superfluid states to be accessed 
for 4He, but not for 3He. Since a large part of the chemical interest derives from the 
possibility of unusual quantum solvent effects on embedded or scattered species due to 
superfluid characteristics of the clusters, this essential difference means that the Bose 
clusters of 4He are of greater interest from a chemical point of view. 

Superfluid clusters offer an intriguing environment for low-temperature chemistry. 
In the bulk, superfluidity is accompanied by large thermal conductivities, resulting in 
virtually instantaneous heat dissipation from local sources, and in very weak 
temperature gradients. Ifthis feature holds also in a cluster of 4He, it could be utilized to 
study energy transfer and chemical reactions under single-collision conditions, by 
scattering from embedded molecules. Very fast energy transfer to the quantum ‘solvent’ 
from the collision partners would strongly influence the low-temperature branching 
ratios. Evidence for such fast energy transfer has been seen recently in the formation of 
metastable solid phases of impurity atoms (nitrogen and neon) solvated by helium in 
bulk superfluid He I1 (Gordon et al. 1989). For large molecules with complicated 
branching patterns, the resulting simplification of the collision outcome would allow 
access to the state-to-state dynamics of very large systems and also possibly provide a 
new and useful route to the study of intramolecular energy redistribution. 

Clusters of molecular hydrogen present additional, rather novel questions about 
quantum effects in low-temperature finite aggregates. In particular, the nature of their 
structure, that is solid or liquid, and the possibility of superfluidity in a cluster for a 
species which has no bulk superfluid state. There is no superfluid state in bulk H, 
because it has a triple point at 13.6 K (Weast 1981) below which only the solid and gas 
states are found, while the Bose-Einstein condensation temperature, which serves as 
an order-of-magnitude upper estimate of the superfluid transition, is predicted to 
be at  T=6.6K for para-H, (Ginsburg and Sobyanin 1972), compared with 
T= 3.2 K for 4He. Nevertheless, while finite, this is a relatively small temperature 
difference, and as a consequence there has been considerable effort expended over the 
years in trying to supercool bulk liquid H, below the triple point to access a new 
superfluid (Maris et al. 1983). Since H, exists in both the para ( I  = 0 compound boson) 
and ortho ( I =  1; compound fermion) state, the possibility exists of a whole new set of 
superfluids. Specific-heat anomalies of hydrogen confined in small pores have been 
interpreted as yielding evidence for roton-like excitations (Brewer et a f .  1990). 
However, most supercooling efforts so far failed to produce a superfluid. This is where 
utilization of the finite-size effects endemic to a cluster may have dramatic effects. It is 
well known and has been documented both experimentally and theoretically for a 
number of homonuclear clusters that freezing temperatures are lowered in finite-size 
systems (Borel 198 1, Buffat and Borel 1976, Beck et al. 1989, Castro et al. 1990, Ercolessi 
et al. 1991). The extent of the maximum depression at small cluster sizes is dependent on 
the cohesive energy, with more weakly bound systems being susceptible to greater 
depression. Since (HJN has much less cohesive energy than the metal and semi- 
conductor clusters for which the maximum T, depression is about tT,, the extreme 
scenario sketched in figure 1 becomes a possibility, namely a ‘phase transition’ between 
liquid- and solid-state clusters at zero temperature, as the cluster size N is increased. 
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Structure and dynamics of quantum clusters 43 

Figure 1. Schematic size dependence ofthe melting transition T, in clusters as a function of size, 
N .  The broken line shows a possible extrapolation to small sizes for particles with 
relatively weak cohesive forces, such as (H& 

Even if T, is still finite, the general lowering of density in small clusters means that 
quantum delocalization effects will be larger in solid H, clusters than they already are 
in bulk solid H,. Regardless of whether the zero-temperature structures are therefore 
quantum liquid or extensively delocalized quantum solids, the possibility of low- 
density collective behaviour defined by Bose statistics and hence of superfluid effects in 
finite clusters of H, is very real. 

The final preliminary question that we wish to address is the insight into the nature 
of superfluidity which these clusters can offer. Despite many years of research into the 
properties of the liquid-helium isotopes, theoretical understanding of the superfluid 
state today is still largely phenomenological. Microscopic theory at the atomic level 
exists really only for the ground-state wavefunction and structure. While the excitation 
spectrum can be calculated to varying degrees of sophistication using many-body 
techniques, very little understanding exists of the detailed atomic dynamics in the 
characteristic roton states. If one can characterize a minimum-size cluster required to 
see these states, and one has theoretical techniques for analysis of atomic dynamics in 
finite clusters, then new insight into the superfluid state at the molecular level may be 
achieved. 

The above introduction shows the various motivations for studying these very 
weakly bound clusters. The primary focus of this review is theoretical studies of these 
systems, and in &3-5 we shall concentrate on these, However, since much of the 
theoretical work currently being done is closely coupled to experimental studies, we 
first give a brief overview of experimental work on clusters of helium and molecular 
hydrogen in the next section. 
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2. Experimental studies 
2.1. Helium clusters in external media 

The studies of Syskakis et al. (1985, 1990) of the specific heat of helium bubbles 
enclosed in metallic matrices were mentioned above. For 4He these showed evidence of 
a superfluid transition at a temperature T, lower than the bulk value of 2017 K, and a 
rounding of the specific-heat lambda discontinuity. Qualitative agreement was seen 
with the Ginzburg-Landau-Pitaevskii mean-field scaling arguments of Mamaladze 
(Ginzburg and Sobyanin 1976). For 3He the lowest temperatures reached were about 
15 mK, no evidence of transition to the superfluid phase was seen (Syskakis et al. 1990). 

The formation of metastable solid phases of solvated impurity atoms in bulk He I1 
has been observed by Gordon et al. (1989,1993). These solid phases appear to consist of 
clusters of solvated impurity atoms stabilized by at least one layer of helium, which are 
decomposed on heating. Atomic nitrogen is thereby stabilized against radiative 
recombination at low temperatures (T  < 8 K). Strong localization of the helium is 
invoked to account for the stability of the crystalline cluster phase. This may be similar 
to the solidification of helium believed to occur in the formation of ‘snowballs’, which 
are charged aggregates of 5&100 helium atoms surrounding impurity ions in bulk 
liquid helium (Schwartz 1975). 

2.2. Free helium clusters 
Free helium clusters were first formed in molecular-beam expansions by Becker 

et al. (1961) and atomic scattering as well as electronic excitation studies were 
subsequently carried out on very large clusters of both 3He and 4He in a series of 
experiments by Gspann and co-workers (Gspann and Vollmar 1978, 1980, Gspann 
1981a, 1982, Gspann and Ries 1985). These early studies found that atomic scattering 
resulted in cluster deflection and also saw fragmentation of electronically excited 
metastable neutrals. The second experimental phase consisted of a series of mass 
spectrometry studies which yielded size distributions for positively charged He; (van 
Deursen and Reuss 1975, Stephens and King 1983, Buchenau et al. 1985,1986, 1990). 
Stephens and King reported magic numbers for small N but no evidence of these was 
seen in other studies. Buchenau et al. (1 990) used a time-of-flight (TOF) method to show 
that several different kinds of cluster ion are formed. They suggested that fragmentation 
of the adiabatically expanding fluid helium provides an additional source of neutral 
clusters which have velocity and, perhaps, also internal state distributions differing 
from those formed by condensation. These mass spectrometry studies were all limited 
to ionic fragment sizes of N < 160, and estimates of the original neutral sizes had to be 
made indirectly, from consideration of the expansion conditions. Such estimates gave 
N z  lo4 for neutral He, (Buchenau et al. 1990). Recently, Jiang and Northby (1992) 
have developed a stopping potential energy analysis which extends the range of sizes for 
ionized He; to N z lo5, and which can also measure mass distributions of negatively 
charged clusters. Such experiments show an exponentially decaying high-mass 
distribution for N > 100 and appear to confirm the hypothesis of two modes of cluster 
formation: fragmentation and condensation. The negative-ion distributions appear to 
have a size threshold of N z lo’, which is consistent with the boundsplaced by the prior 
experimental electron attachment study of Gspann (1991), as well as with the 
theoretical predictions of Krishna and Whaley (1 988). 

Atomic and molecular scattering from helium clusters was orginally suggested as a 
direct probe of superfluidity. Analysis of such experiments proved problematic for 
many years (Gspann 1982), until it was discovered that most species are readily 
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Structure and dynamics of quantum clusters 45 

absorbed by the clusters. The pick-up of species such as Cs (Gspann and Ries 1986), Xe, 
Ne, O,, CO, SF, and a number of others have now been detected, and in some cases 
clustering within the helium cluster is found (Scheidemann 1989, Scheidemann et al. 
1990a, b). Generally, such absorption is consistent with a liquid structure. Detailed 
study of the pick-up efficiency on the cluster formation conditions has provided 
interesting systematic features: in particular, that clusters formed in expansions 
passing near the critical point are most efficient in capturing foreign species 
(Scheidemann et al. 1990b). Lewerenz et al. (1993) have recently used the measurement 
of cluster deflections due to momentum transfer from an impinging atom or molecule 
to measure the size of the neutrals directly. Attention has now shifted to treating the 
foreign species as atomic or molecular probes of the cluster environment. Recently 
Goyal et al. (1992a) have obtained the first spectroscopic measurements on such a 
foreign molecule, with the measurement of the vibrational spectrum of SF,. They see a 
red shift and a splitting of the triply degenerate v 3  mode which is tentatively ascribed to 
the SF, sitting in an asymmetric environment such as at the cluster surface. Dimer 
absorptions are also seen, with little red shifts relative to their gas-phase values. 
Infrared spectra have also been measured for SiF,, and for complexes of heavier rare- 
gas atoms with SF, in He, (Schutt 1992). Comparison with theoretical studies of 
impurities will be made in 43.3. Mass spectrometry methods are now being used to 
address the reactions of He' with impurities such as SF, inside He, (Scheidemann 
et al. 1993). While still in its early stages, the impurity probe approach is capable of 
yielding direct information on structural and dynamical properties of the clusters and 
bears considerable promise for the future, particularly when combined with theoretical 
analysis. 

2.3. Molecular hydrogen clusters 
In the first experimental studies of these clusters, Maris et al. (1983) attempted to 

supercool liquid H, in droplets levitated in pressurized 4He. Temperatures of 10.6 K 
were attained, not low enough to reach a superfluid state. Subsequently Knuth et al. 
(1990) demonstrated the formation of free clusters of n-H, in a molecular beam 
expansion, reaching estimated temperatures of about 6 K. Goyal et al. (1992b) and 
Schutt (1992) have recently obtained the infrared spectrum of SF, in clusters of both n- 
H, and n-D, with N zz 1000. Estimated temperatures are also about 6 K, and it is not 
clear whether under these conditions the clusters are solid like or liquid like. Both 
monomer and dimer red-shifted absorptions of the SF, v g  mode are detected but, in 
contrast with the situation in He,, no splitting of the monomer absorption is seen. The 
magnitudes of the red shifts are larger than in helium. These spectra are consistent with 
the fact that the SF, is solvated at  the centre of the hydrogen clusters, in contrast with 
the conclusions reached for helium. 

3. Theory: overview and ground-state studies 
3.1. Overview 

In order to achieve an understanding of the way in which superfluid effects scale in 
clusters, both ground- and excited-state information is required. As in the bulk, 
superfluidity can be approached from two different viewpoints. The first is consider- 
ation of the spectrum of elementary excitations out of the ground state and the 
observation of an energy gap . Since in a finite system all excitations are discretized, 
there is always a trivial energy gap. One has to look instead in detail at the finite-size 
scaling of the roton excitations characteristic of the superfluid state, and at the finite- 
size energy-momentum relationship for creation of elementary excitations. This 
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46 K. B. Whaley 

resembles the microscopic approach of Feynman (1954) and requires some knowledge 
of the ground- and low-lying excited-state wavefunctions. This microscopic approach, 
which is discussed in $4.2, has the useful corollary that analysis of excited-state 
wavefunctions may yield information on the detailed atomic dynamics in rotons for 
finite systems. A complementary approach, based on the phenomenological two-fluid 
model, is to consider the response of the system to rotation. When combined with 
microscopic calculation of the density matrix, this can be shown to yield microscopic 
expressions for the normal and superfluid fractions at finite temperatures. Calculations 
for clusters based an path integral evaluation of the finite-temperature density matrix 
are discussed in 5 5.2. 

Both of these quantities, the elementary excitation spectrum and the superfluid 
fraction, are accessible to direct experimental measurement in bulk He but not in free 
pure 4He clusters. The cluster flux obtainable in molecular-beam expansions is too weak 
for neutron scattering, and measurement of moments of inertia for freely rotating 
clusters 4He, is likely to remain a thought experiment. This provides therefore a strong 
motivation to introduce impurities to act as probes of both the elementary excitations 
and the response to rotation. The structural perturbations induced by such impurities 
in the ground state are of immediate interest, since at  temperatures low enough that 
superfluid behaviour may be manifested, the structure is expected, just as in bulk 4He 
(Whitlock et al. 1979), to be similar to the ground state. (However, free rotations of the 
cluster, which have no analogue in the bulk, may change this; $4.2) Accurate 
assessment of the energy changes induced by binding of an impurity are also needed, 
particularly since very few species are known to dissolve in bulk helium. Similar 
structural and energy information in excited states with impurities are needed, as well 
as a comprehensive theory for the coupling of molecular or atomic impurity excitations 
with the cluster modes. Ground-state studies of impurities are discussed in 4 3.3, and 
finite-temperature studies in $ 5.2. 

A third issue for theory is the treatment of scattering from quantum clusters. This 
means both analysis of the propensity for absorption of neutrals, and the electronic 
excitation and fragmentation induced by electron bombardment. Some work has been 
done on both of these topics and will be summarized in 45.3. Interesting but more 
esoteric topics such as light scattering and very-high-energy elastic electron scattering 
have not yet been addressed by either theory or experiment. 

In the rest of this section we describe ground-state studies. Section 4 then deals with 
excited states and addresses the above-outlined issues in detail. Studies of both helium 
and molecular hydrogen will be referred to together, classified by their focus, that is 
ground state, excited state, etc., rather than by the cluster make-up. Section 5 describes 
finite-temperature and scattering studies. We conclude with some discussion of future 
directions for these systems in 9 6. 

3.2. Ground states: quantum Monte Carlo methods 
The first applications of quantum Monte Carlo (QMC) techniques to these clusters 

were made by nuclear physicists who employed helium clusters as test systems in 
developing computational techniques for ground-state studies of nuclei. In a series of 
papers beginning in 1983, Pandharipande and co-workers (Pandharipande et al. 1983, 
1986, Pieper et al. 1985, Lewart et al. 1988) showed the viability of QMC for accurate 
ground-state calculations, making both variational Monte Carlo (VMC) and Green 
function Monte Carlo (GFMC) calculations. Extensive ground-state studies of helium 
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and hydrogen clusters using VMC have been made by Krishna and Whaley (1990a-d, 
1991a) and Barnett and Whaley (1993a) Rick et al. (1991b) and Rick and Doll (1992) 
have used VMC to also analyse the quantum effects in ground states of helium and 
heavier rare-gas clusters. The VMC method was recently refined and extended to deal 
with clusters containing impurities by Barnett and Whaley (1992). All VMC 
calculations have been calibrated by comparison with exact calculations, either with 
GFMC or, more recently, diffusion Monte Carlo (DMC) methods. DMC studies have 
been carried out by Krishna and Whaley (1990d), Rick et al. (1991a), Chin and 
Krotscheck (1990,1992) and Barnett and Whaley (1993a). We now discuss the ground- 
state VMC literature. 

3.2.1. Variational Monte Carlo method for pure clusters 
The VMC approach to cluster ground states consists of proposing a many-body 

wavefunction $(R) and then optimizing the parameters that it contains. Generally, one 
seeks a minimum in the ground-state energy: 

( E )  =s$*fi$ d t / s$*$  dt. (3.1) 

be rewritten in terms of a probability density function 

where the local energy is given by 

The energy can then be computed as a finite sum over points sampled from p(R): 

(3.4) 

where equality is reached as M - m .  Most workers have used the standard Metropolis 
walk to sample p(R) (Pandharipande et al. 1986, Krishna and Whaley 1990b,d, Rick 
et al. 1991b). Barnett and Whaley (1993a) have made a detailed study of the relative 
efficiency of the standard 'unguided' Metropolis walk, and a walk 'guided' by t+b. 

For the pure Bose species, accurate ground-state wavefunctions are given by the 
nodeless form 

This generalized Jastrow form is symmetrized with respect to all pair permutations, 
and because of its exponential nature it is very well suited to dealing with the strongly 
repulsive short-range interactions. Equation (3.5) is a generalization of the most 
accurate ground-state variational wavefunction available for bulk liquid 4He today. 
Some workers have introduced an additional multiplicative factor x1 to improve 
binding for larger clusters, in the form of either a product of true single-particle terms 
describing motion in an effective binding potential (Pandharipande et al. 1983, 1986, 
Krishna and Whaley 1990b,d, Rick et al. 1991b), or an implicit N-particle term 
describing confinement to the centre of mass (Chin and Krotscheck 1990,1992). Several 
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pair correlation terms t ,  have been employed. Initially the functional form was chosen 
to model particular physical types of correlation (Pandharipande et al. 1986, Krishna 
and Whaley 1990b, d, Rick et al. 1991 b). Recently Barnett and Whaley (1992) have had 
considerable success with fitting x2(r)=exp [t,(r)] to the bound state of the HeH, van 
der Waals dimer. They have also explored parametrizing the short-range part of x 2  in 
terms of the pair potential, in order to reduce large fluctuations in the local energy at 
small separation (Barnett and Whaley 1993a). Less work has been done on the triplet 
correlation term t , ,  and all workers so far have used the same functional form 
developed for bulk liquid helium (Usmani et al. 1982). 

Barnett and Whaley (1 992) have generalized these wavefunctions to incorporate 
impurities. When an impurity X is added which interacts isotropically with helium, 
equation (3.5) is multipled by 

(3.6) 

where f, is also an exponential function. For anisotropic interactions such as derive 
from molecular impurities,f, becomes a function of one or more angles in addition to 
the distance. Three-particle correlation terms involving the impurity have also been 
explored (Barnett and Whaley 1993b). These wavefunctions can also be modified to 
allow greater localization by introducing extra ‘shadow’ degrees of freedom. This was 
first done by Krishna and Whaley (1991a) for clusters of H, and was subsequently 
generalized by Rick et al. (199 1 b) for investigation of localization in ground states of 
neon and argon. Finally, for the Fermi systems studied by Pandharipande et al. (1986) 
namely ,HeN, equation (3.5) is multiplied by a Slater determinant of free-electron gas 
functions. 

These trial wavefunctions then typically contain a total of between seven and 15 
parameters, which have to be variationally optimized. Usually the expectation value of 
the local energy is minimized, although the variance can also be minimized to 
emphasize local wavefunction accuracy. Most workers have performed parameter 
optimization on a fixed sample of M points(equation 3.4), with intermittent updating of 
the sample to take account of large wavefunction changes during optimization. Several 
schemes have been employed for minimization, including conjugate gradient, simu- 
lated annealing and least-squares fitting. In all cases, however, hand optimization of 
some of or all the parameters has proved invaluable. Systematic features of 
optimization have been discussed by Barnett and Whaley (1993a). 

The VMC energies of a range of cluster sizes are summarized in table 1 for 4He,, 
and in table 2 for (HJN. The binding is generally very weak, with the ground-state 
energies E ( N ) / N  per particle increasing from -0.039 K for the first bound helium 
system, N = 3, to -4.95 K for the largest cluster yet studied, N =728. The latter is still 
only 70% of the bulk binding energy, 7.11 K per particle (Pandharipande et al. 1983). 
,He, clusters are much more weakly bound and a minimum size of N z 40 is required 
to achieve negative energy (Pandharipande et al. 1986). This is a direct consequence of 
the additional repulsion arising from the Pauli exclusion in the Fermi systems. For 
both 4HeN and ,HeN, with N220,  ground-state energies have been fitted with the 
classical liquid-drop formula containing volume ( E J  surface (E,)  and curvature (E,) 
terms (Pandharipande et af. 1986): 
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Table 1. Ground-state properties of 4He,: energies ( E / N )  per particle, r.m.s. radii (R')''' and 
unit radii ro. Energies followed by an asterisk are computed with HFDHE2 potential (Aziz 
et al. 1979). All other values are computed with the HFD-B(HE) potential (Aziz et al. 
1987). 

E," (VMC) E / N  (DMC) E / N  (GFMC) (R')''' (DMC) ro (DMC) 
N (K) (K) (K) (4 (A) 

3 

4 
5 
6 
7 

14 
20 

40 
70 

112 
240 
728 

- 0.041 5 (1)" 
-0-0371 
- 0.1 356 ( 1 )" 
- 0.2502 (1 )" 
-0.3697 (1)' 
- 0.4838 ( l)d 
- 1.1290(7)d 
-1.510(2)' 
- 1.461 (1)" 
- 2'430 (2)" 
- 3.043 (1)' 
- 3.476 (4)h 
- 4.1 92 (4)f 
- 4.99 

-0.0443(1)" 
- 0.0392 (1)*' 
-0.1 1445 (2)" 
- 0'2678 (6)" 
- 0.3984 (8) 
-0.5221 (5)" 
- 1.2478 (12)" 
- 1.688 (2)" 
- 1.626(2)*" 
-2.575 (3)" 
- 3.253 (4)" 
- 3'7.80 (3)" 

- 0.0391 ( 
- 0.1 333 (5)*b 
-0.2514(4)*' 
-0.3735 (5)*' 
-0.4965(7)*' 
- 1.2080 (40)*' 

- 1.627(3)*b 

-3.12(4)*b 

6.25 
6.49 
5.07 
4.83 
4.89 
4-77 
5.28 
5.65 
5.71 
6.70 
7.72 
8.92 

10.68 
16.16 

5.60 
5.81 
4.13 
3.65 
3.47 
3.22 
2-83 
2.69 
2.72 
2.53 
2.42 
2.39 
2.229 
2.32g 

Barnett and Whaley (1993a). 
Pandharipande et al. (1983). 
' Melzer and Zabolitzky (1995). 
dBarnett and Whaley (1992). 

Barnett and Whaley (1993b). 
Krishna and Whaley (1990b). 

gVMC value. 
* R. N. Barnett (1992, private communication). 
McMahon et al. (1993). 

Table 2. Ground-state properties of (HJN (McMahon and Whaley 1993), energies E / N  per 
particle, r.m.s. radii (R2)1'2 and unit radii ro. All values are computed by VMC with the 
potential of Buck et al. (1983). 

2 - 2.1 55  (1) 5.15 5.286 
6 -11.389(5) 3.52 2.499 
7 - 13.01 3 (2) 3.67 2.482 

13 - 19.98 (1) 6.05 3.327 
33 - 29.75 (1) 8.14 3.280 
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where x = N- 1'3. This enables the chemical potential to be obtained via the relation 

dE p=- 
dN'  

Lewart et af. (1988) have used the variational ground-state wavefunctions to obtain 
natural orbitals and hence to evaluate the single-particle momentum distribution and 
condensate fraction no. Simple model calculations for non-interacting bosons in a 
spherical box predict an increase in no as the radius is decreased (Krishna and Whaley 
1991b). Since the average radius generally decreases as N decreases, except for N ,<7 
(see below), this implies that no should exceed the bulk value of about 0.10 in the finite 
interacting clusters. For N = 70 the non-interacting confined boson model yields 
no ~ 0 . 2 6 ,  while Lewart et al. (1988) estimate that no ~ 0 . 3 6  from the variational ground 
state. 

Table 2 indicates that clusters of molecular hydrogen are more strongly bound. 
They also show quite different structural characteristics as we now discuss. Two general 
structural parameters are the r.m.s. radius (R2) l12 ,  where R is measured from the 
centre of mass, and the unit radius ro =(5(R2)/3)'12N- l',, which gives the volume per 
particle in an equivalent sphere of uniform density. For helium we quote the DMC 
results in table 1, for which ro decreases monotonically to a value close to the bulk value 
(2.22 A) for N 3 100, while (R2)lI2 shows a minimum at N = 7. This is consistent with 
the breakdown of the liquid-drop energy scaling for N < 20. For the very small clusters 
( N  B 7), the addition of an extra atom causes a very large percentage gain in binding and 
a large contraction from the extremely diffuse trimer. However, this effect saturates at  
fairly small N because of the strongly repulsive nature of the He-He interaction and is 
followed by an approximately constant volume increase with each further helium 
addition. An interesting detail is the slight drop in (R2) ' l2  at N = 7, implying that the 
N = 7 structure is anomalously small and compact. This may be a residual 'ghost' effect 
of the stability of the classical pentagonal bipyramid structure. The size reduction for N 
= 7 relative to N = 6 was also seen in VMC by Rick and Doll (1992). For (HJ,, (R2) '12  
has a minimum at N = 6 after which it monotonically increases. However, ro has a more 
complex non-monotonic behaviour, with a minimum at N = 7 and a maximum at N 
= 13. The behaviour of (R2)1/2 is similar to that for He,, but the different behaviour of 
ro for (H2), suggests that these clusters are not described very well by pure liquid 
models. Nevertheless, at N = 33 the unit radius ro is still considerably higher than the 
bulk value at 1 atm pressure (2.09 A), indicating a considerable amount of 
delocalization. 

The single-particle density distributions for 4He, show monotonic decay from the 
centre, with a diffuse surface region and with the central density rising to that of bulk 
4He for N ~ 2 0 0  (figure 2). The larger clusters have an apparently uniform interior 
density and no statistically significant density oscillations are seen in either low- or 
high-resolution studies at the VMC level. However, high-resolution studies of He, have 
shown an additional central peak (figure 2a) whose origin could be traced to a high 
weight of nearly collinear configurations by construction of conditional probability 
distributions (Barnett and Whaley 1992). The large weight of classically unstable 
configurations for this species was also noted by Rick et al. (1991b). The Fermi clusters 
,He, do show some evidence for density oscillations in the interior regions, although 
these are reduced when the back-flow correlation term f3 is included (Pandharipande 
et al. 1986). Generally, such density oscillations are less favourable for helium than for 
heavier classical systems, because of the high surface tension and low compressibility of 
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Structure and dynamics of quantum clusters 5 1  

helium systems (Stringari and Treiner 1987). With (H2)N the situation is very different, 
as is evident from figure 3. Spherical radial density distributions show pronounced 
structure which is consistent in all cases with some degree of hard core packing. As for 
the He, case, more detail can be obtained by constructing conditional densities or 
contour plots. Figure 3 b shows a contour plot for (H2),, which clearly indicates the 
presence of a nearly spherical ridge of high density. Detailed analysis shows that this is 
likely to be caused by a large contribution of asymmetric structures approximating the 
classical pentagonal bipyramid (McMahon et al. 1993). However, there is still a large 
extent of delocalization, whether we choose to refer to them as ‘quantum solids’ or as 
‘quantum liquids’. Evaluation of higher-order structural correlation functions will be 
required to quantify the extent of localization. 

Higher-order correlations studied to date have included two-particle distributions, 
bond angle and dihedral angle distributions. The full anisotropic pair distribution 
function g2(r1, r2) (Pieper et al. 1985), its value from the origin, g,(O, r2) (Krishna and 
Whaley 1990b) and the more averaged pair distribution function p(ri j )  (Barnett and 
Whaley 1992) for 4HeN are seen to have typical quantum fluid oscillatory structure, 
with correlations which increase with increasing N .  For (H2JN the structure occurs at 
smaller N and is more pronounced (figure 3). The same is true for the angular 
correlation (Krishna and Whaley 1991a). Rick et al. (1991b) have made an interesting 
study for small clusters of the heavier rare-gas species, Ne and Ar ( N  < 7), using VMC 
wavefunctions with shadow coordinates. These clusters are all strongly localized and in 
this situation quantitative analysis of the extent of delocalization and quantum effects is 
possible. 

3.2.2. Exact calculations: Green function Monte Carlo and diffusion Monte Carlo 
methods 

VMC can yield only an upper bound to the true ground-state energy, and so it is 
necessary to check the accuracy, whenever possible, both of the energy and of structural 
features which are often more sensitive to small changes in the wavefunction. Both 
GFMC and DMC methods are techniques for iteratingfrom a trial wavefunction to the 
ground-state wavefunction and thereby yielding exact energies. In the GFMC method 
the time-independent Schrodinger equation is solved in integral form, with the time- 
independent Green function sampled at each iteration (Kalos et al. 1974): 

)“+”(R)=SdR’G(R, R’)$(‘)(R’). (3.9) 

Details of GFMC calculations for helium have been given by Kalos et al. (1981). DMC 
iterates the time-dependent Schrodinger equation in imaginary time: 

(3.10) 
a 
at 

-ti- [@(R, t)=H(R)@(R,t), 

with 

(3.1 1) 

(3.12) 
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Figure 2. Single-particle radial density profiles for ground-state 4He, clusters: (a) N = 3: 
(b) N = 7,20,40 and 70, VMC results; (c) N = 7,20,40 and 70, second-order DMC results; 
(d) N = 112. - - - -, VMC; and -, DMC for (a) and (d). 
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Distance from z-axis ( d ) 
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Figure 3. (a) Single-particle radial density profiles for ground state (Hz)N clusters: N =7,13 and 
33; VMC results from (M. McMahon and K. B. Whaley 1993, unpublished data) (b)  
Contour plot of the density distribution function p(z, r), where Y is the two-dimensional 
radial coordinate in the x-y plane, for N = 7. For (a): - - -, (HJ7;-, (HJI3; and -.-, (H2)33. 
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Structure and dynamics of quantum clusters 55 

until, at large t ,  the ground state is obtained. Iteration is accomplished by sampling a 
known Green function G,(t), which becomes equal to the (generally unknown) true 
Green function G(t) for equation (3.10) as the time At goes to zero. That is, the large-t 
solution is obtained by iterating for many time steps At, sampling from G,(At) % G(t). 
This ‘short-time’ approximation necessitates that care be taken to eliminate time step 
bias in computed results. 

Statistical error in both techniques is reduced by use of importance sampling. For 
DMC this is incorporated by defining new density functions 

for which the imaginary time-dependent equation becomes 

where EL(R) is the local energy (equation (3.3)) and Fo(R) = V In (l$(R)12) is the ‘quantum 
force’. Usually, $ is a variational wavefunction chosen to approximate the ground state 
@. The ground-state energy can then be obtained from an average of the local energy 
overf(R,t). For operators A not commuting with H ,  such as coordinate operators, 
most researchers have employed the ‘second-order’ estimator of (@lAl@): 

(3.15) 

Rick et al. (1991a) employ DMC without importance sampling. This is acceptable 
since the He-He interaction is bounded from below but is nevertheless less efficient 
than employing a trial function to bias or ‘guide’ the walk. This becomes more 
important for clusters containing impurities which cause local ordering in the 
surrounding helium (Barnett and Whaley 1993b). Details of DMC calculations with 
importance sampling for helium clusters have been discussed by Chin and Krotscheck 
(1992) and by Barnett and Whaley (1993a). 

General energy trends of the ground states were discussed above for the VMC 
solutions. Agreement between converged GFMC or DMC with VMC for a range of N 
(table 1) shows that the variational wavefunctions of 0 3.2.1 can give accurate upper 
bounds to the ground-state energies. Here we shall focus just on the additional 
information which these exact techniques provide. 

4He, ground-state energies obtained with GFMC and DMC for selected cluster 
sizes are listed in table 1 .  The potentials used are both based on Hartrel Fock plus 
damped dispersion, i.e. HFD. Calculations performed with the newer He-He potential, 
HFD-B(HE) give energies significantly below those resulting from the older HFDHE2 
potential. With the same potential, the DMC (Barnett and Whaley 1993a) and GFMC 
(Pandharipande et al. 1983) results for the same potential agree, except for the largest 
cluster N = 112, for which the DMC gives a lower energy. The GFMC calculations may 
have convergence difficulties for larger clusters. The DMC results of Chin and 
Krotscheck (1992), obtained with a different DMC algorithm and the HFDHE2 
potential are consistently lower than both the GFMC and the DMC results with this 
potential (Barnett and Whaley 1993a). The reason for this discrepancy is unclear as it is 
well beyond statistical error. In the absence of convergence details for the results of 
Chin and Krotscheck it appears most likely that there are long-lived metastable states 
contributing to the time averages in the calculations of Chin and Krotscheck (1992). 
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Helmbrecht and Zabolitzky (1984) carried out a systematic study with GFMC for all 
4HeN clusters with N<33  and showed that there are no energy magic numbers 
corresponding to clusters of enhanced energy stability. This is consistent with 
extremely delocalized liquid-like structures for the pure clusters. 

The structural parameters (R2)'I2 and r,, have been summarized for DMC in table 
1 and the implications for the stability of the smaller clusters have been discussed 
above. While there are no magic numbers energetically, accurate structural studies are 
now showing evidence of structural compactness for certain sizes. Density profiles 
evaluated by DMC show some differences from the corresponding VMC profiles. Chin 
and Krotscheck (1990, 1992) reported a small oscillatory structure in low-resolution 
studies of&) for 4HeN, N > 70, which may also be due to contributions from long-lived 
metastable states. Higher-resolution converged studies for He, , by Barnett and 
Whaley (1993a) show that the oscillations in the interior are within the statistical error, 
but that there is a small shoulder on the decay into the diffuse surface region (figure 1 d ) .  
Larger differences are seen between DMC and VMC calculations for heterogeneous 
clusters, discussed below. DMC calculations for (H2)N also show more pronounced 
structure than the VMC results in figure 2 (McMahon and Whaley 1993, submitted). 

3.3. Quantum Monte Carlo studies of impurities bound to 4HeN 
Barnett and Whaley (1992) have employed VMC and DMC to study the ground 

state of helium clusters containing a molecular impurity, using the wavefunctions in 
equations (3.5) and (3.6). Comparison of DMC with VMC calculations show that a high 
accuracy can be obtained by VMC when the functional form of the additional pair 
function x is tailored to fit the bound-state wavefunction for the Hex dimer. The 
molecular impurities studied so far, H,, D, and SF,, cover a wide range of ground-state 
structural behaviours, which can be generally understood in terms of the different 
strength of the He-X interactions and of the different impurity masses. 

The H,-He van der Waals interaction is very accurately known, and the H,He 
dimer possesses at feast one bound state. This was therefore a natural choice for 
development of the VMC impurity methodology (Barnett and Whaley 1992). The 
ground-state energy is lowered on exchanging one helium for a H,, as one would expect 
from the greater binding of He with H,. The exchange energy, defined as 

(3.16) 

increases monotonically from a value of -0.143 K for N = 3, to - 1.68 K for N = 20. 
The bulk value has been estimated to be about -20 K from density functional studies 
(Kiirten and Ristig 1985). The ground-state structures correspond to a very delocalized 
H, which has very little perturbing influence on the helium density. Figure 4 shows the 
ground-state density profiles for N = 2,13 and 20. The helium profiles are very similar 
to those in the pure clusters. Despite the appearance of a peak in the H, density, the 
single H, species is clearly delocalized over the entire cluster. The trimer H,He, is 
unique in having the H, peak at the centre, which reflects the large weight of near- 
collinear configurations just as in He,. Generally, the peak occurs at an intermediate 
location. Detailed quantitative analysis of the Hz distribution shows that the H, tends 
to reside at larger distances from the cluster centre for the larger clusters but 
nevertheless remains well within the cluster surface (Barnett and Whaley 1992). 
H,He,, is anomalous in that a higher percentage of the H, lies outside the radius 
containing 50% of all particles. This indicates a structural robustness of the He,, unit, 
similar to that inferred for He, earlier, which may be associated with a 'ghost' of the 
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Structure and dynamics of quantum clusters 5 1  

classical icosahedral structure. These studies were carried out using the isotropic H,- 
He interaction potential. Incorporating the potential anisotropy gives slight increases 
in binding energy, but otherwise little change is seen (R. N. Barnett 1992, private 
communication). The situation is very different for the heavier isotope, D,, shown in 
figure 5 (Barnett et  al? 1993). The heavier isotope is considerably more localized at the 
centre of the cluster and has no peak in or near the surface region. This reflects the 
greater binding of the' D,He system. The helium distribution is now complementary to 
the D, distribution, showing a peak away from the cluster centre. Note that for D2He2 
the central peak corresponding to nearly collinear configurations still persists, 
however. 

The heavier impurity SF, possesses a stronger interaction with helium (Pack et al. 
1984); the well depth for approach along the three symmetry axes varies from 41 to 
84 K. The isotropic component of the interaction has a well depth of 62 K. Barnett and 
Whaley (1993b) have carried out both VMC and DMC calculations for a range of sizes 
and find that in the ground state the SF, is strongly bound in the centre of the cluster. 
The DMC density distributions show marked structuring of the helium in shells 
around the central SF, species, summarized in figure 6 for N=20,  39 and 111. This 
structure is very difficult to reproduce at the VMC level of calculation and confirms the 
importance of carrying out exact DMC calculations whenever possible to verify or to 
check variational results. Comparison with the bulk densities of liquid and solid helium 
shows that the first 'solvent shell' of helium is definitely solid, and that extensive 
structuring of the remaining helium occurs into liquid-like solvation shells about the 
SF,. Integration of the helium density in successive shells implies that 22-23 atoms are 
contained in the first solvation shell, which is near to the value of 20 obtained in 
classical studies of ArSF, (Chartrand et al. 1991). 

The location of the SF, is of considerable interest experimentally, since SF, 
attachment to He, has recently been studied both mass spectrometrically and 
spectroscopically, with conflicting conclusions. Schneidemann et al. (1 993) have 
performed mass spectrometry analysis of SF,He,. They found a large proportion of 
SF: in the products, leading them to conclude that the SF, must be located in the 
centre of the cluster to allow efficient quenching of SF:, rather than fragmentation to 
SF; and SF:, which are the more abundant products in gas-phase ionization of SF,. 
On the other hand, Goyal et  al. (1992a, b) have recently employed the laser bolometry 
detection method to obtain the vibrational spectrum of SF, attached both to He, and 
to (H,),. They find a red shift of about 1.5 cm-' and a splitting of the v 3  monomer 
absorption in He,, which is interpreted to imply that the SF, sits in an asymmetric 
environment such as at the cluster surface. For (HJN, in contrast, no splitting of the 
monomer absorption is seen, which implies that the SF, is located in the centre here. 
Spectral shifts of vibrational lines are due to stretching dependence of the impurity 
vibration on a nearby van der Waals bonded helium or H,. For SF, in argon clusters, 
the dominant component of this was shown by Eichenauer and LeRoy (1988) to be the 
instantaneous vibrational dipole-induced-dipole interaction. This electrostatic effect 
has been investigated for SF,HeN by Barnett and Whaley (1993b), using the first-order 
perturbation theory formulation of Eichenauer and LeRoy, adapted to quantum 
systems. At the DMC level and employing the full anisotropic He-SF, interaction, this 
yields average red shifts of about 0.9 cm- for clusters with N % 11 1 and a linewidth of 
about 0-3cm-'. No splitting of the absorption is seen, which is consistent with a 
centrally located impurity. However, no splitting is also predicted theoretically for the 
dimer, which represents an extremely asymmetric system. This is apparently due to the 
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Structure and dynamics of quantum clusters 59 

Figure 4. Single-particle radial density profiles for ground state H,He, clusters: (a) N 5 2; 
(b)  N = 13; (c) N = 20. The broken and solid curves refer to helium and to H, respectively 
and are normalized to one particle per cluster in each case; VMC results. (From Barnetl 
and Whaley 1992.) 

very large zero-point delocalization. Thus, in order to obtain a splitting of the 
threefold-degenerate vibrational absorption in helium clusters theoretically, it may be 
necessary to incorporate the stretching dependence of the repulsive part of interaction 
potential, which is not well known. Another possible reason for the discrepancy may be 
that experimentally the clusters are formed in high-angular-momentum states, in which 
the SF, is located near a surface because of centrifugal forces or vortex formation. 
Theoretical methods of treating rotating clusters are discussed in 9 4.3. 

Recently, Bacic et al. (1992) made a VMC and GFMC study of the small clusters 
CI,He, and CI,He,, employing atom-atom pairwise Morse potentials. For these very 
small systems they find that the zero-point energy can be approximated by the sum of 
the contributions from all CI,He fragments and all possible He, fragments. Consider- 
ation of the ground-state energies of pure He, in table 1 shows that this interesting 
correlation will be likely to break down for larger cluster sizes when the contribution 
from He-He interactions is no ionger additive. There have also been several studies of 
atoms and molecules attached to very small clusters of 4He, employing non-QMC 
methods. Horn et al. (1989) made vibrational self-consistent field (SCF) studies of 
XeHe,, and Kosloff et al. (1987) have used a time-dependent SCF method to analyse 
the dissociation of IZHeN, N = 1 4 .  The dynamics of somewhat larger 1,He, clusters ( N  
= 1-9) have been analysed in a quasi-classical approach by Garcia-Vela et al. (1990), in 
a restricted geometry study. The time-dependent SCF study appeared to show a size- 
independent dissociation rate, while the quasi-classical calculations indicated that 
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Figure 5. Single-particle radial density profiles for ground state D,He, clusters: (a) N = 2; 
(b) N = 13. The broken and solid curves refer to helium and to D,, respectively, and are 
normalized to one particle per cluster in each case; VCM results. (From Barnett et al. 
1993.) 
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Figure 6. Single-particle radial He density profiles for ground-state SF6He,; N = 20, 39 and 
I 11; anisotropic SF,-He interaction incorporated; second-order estimates from DMC 
calculations. (From Barnett and W haley 1993b.) 

these rates increase and appear to become statistical for large enough N .  Dalfovo (1989) 
has used the density-functional approach (see below) to analyse the surface states of 
3He on clusters of 4He, and has compared the results with those of a variational 
calculation based on the trial wavefunction 

$ ( r l . .  . r N ) = f ( r l ) $ d r l . .  . IN), (3.17) 

where r I  is the coordinate of the 3He atom, and ri, i=2-N, are the coordinates of the 
4He atoms. Good agreement is obtained between the two approaches, both of which 
predict an effective potential with a well in the surface region giving rise to stable 
surface-bound ground states with energies scaling with the surface curvature, that is 
N - 1 ' 3 .  This is consistent with the occurrence of surface states on bulk 4He (Andreev 
states) and follows from the balance of excess kinetic energy of one 3He in the bulk, and 
the binding energy of He-He. Higher-energy states are found to enter the cluster, that is 
at energies exceeding the central value of the effective potential. 

3.4. Mean-Jield and densily-functional studies 
This approach, first applied to helium clusters by Stringari and Treiner (1987), has 

the advantage of involving much simpler calculations than the QMC method. Mean- 
field theories can also be extended to provide approximations for excited states and 
dynamical effects (4 4). Stringari and Treiner (1987) use a phenomenological non-local 
Skyrme interaction to derive Hartree-Fock equations for single-particle wavefunc- 
tions for both 4HeN and 3HeN. The resulting ground-state properties for the Bose 
clu~ters(~He,) are in good agreement with the prior Q M C  calculations. For the Fermi 
clusters (3He,) the binding threshold was found to be N = 30, and marked shell effects 
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were found. The single-particle energy levels were found to fall into sets consistent with 
the filling of energy shells for a harmonic oscillator potential 

(3.18) 

where oo constitutes a single-particle energy gap and m* is an effective mass. Even 
though the self-consistent potential energy well is finite, the degeneracy of the energy 
level structure was found to fit the harmonic oscillator model better than that of a 
square well. The resulting magic numbers of enhanced stability were predicted as 
N=40,70,112,168,240,. . . . Despite clear indications of such shell structure in the 
energetics, no oscillations were seen in the ground-state densities however. The density- 
functional approach results in very smooth monotonic profiles for both isotopes, 
unlike the prior VMC calculations of Pandharipande et al. (1986) which had some 
density oscillations for the Fermi systems. The lack of density oscillations in the mean- 
field results was attributed to the high effective mass for 3He (m*=2.8m3), but 
clearly this is a structural detail lost in the density-functional approach. Stringari and 
Treiner (1987) also make an interesting analysis of the relative compression 
S p / p ,  = (p, - po) /po ,  where pE is the central density and p o  the bulk density, showing 
that, for both types of cluster, deviations occur from the behaviour expected for 
saturated systems. In particular, for N < 200, the clusters appear pachidermous, that is 
less compressed than the idealized saturated systems while, for larger N ,  the clusters 
become leptodermous, that is more compressed, and there is a monotonic decrease in 
Sp/p, below zero as N increases further. 

4. Excited states 
Here we summarize theoretical investigations of excited states of quantum clusters. 

We shall deal only with isolated excited states, leaving the question of thermodynamic 
averages over these states to $ 5 .  Most work has focused on the study of collective 
excitations, which can be divided into compressional, surface and rotational collective 
modes. Single-particle excitations out of the ground state have been analysed within 
both the mean-field (Stringari and Treiner 1987) and variational (Lewart et al. 1988) 
approaches but can beexpected to be less significant than the collective modes. Because 
of the liquid nature of helium clusters, valuable qualitative insight into the collective 
modes has been provided by the liquid-drop model (LDM) common in nuclear physics, 
which is based on classical hydrodynamics. We therefore first summarize the 
application of this classical model to He, and its predictions in $4.1. We describe the 
quantum-mechanical generalization of the liquid-drop model (QLDM) in $ 4.2. 
Variational approaches to the excited states are then discussed in Q 4.3, and $4.4 
contains a summary of estimates made within the random-phase approximation. 

4.1. A classical liquid-drop model 
In this model the cluster ground or equilibrium state is assumed to be spherical, to 

have a uniform interior density and to be terminated by a sharp surface at R ,  (Bohr and 
Mottelson 1975). This is a reasonable approximation for large helium clusters (figure 2), 
although the surface always has an intrinsic diffuseness of about 7 A. The collective 
excitations are then obtained by making quadratic expansions of the density in the 
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Structure and dynamics of quantum clusters 63 

appropriate coordinates. For surface vibrations the coordinates are obtained from an 
expansion of the surface shape in the spherical harmonics: 

(4.1) 

while for compressional modes the collective coordinate is the local density fluctuation 

6dr) = P O  jkknlr) YL(@, 4 b I r n n .  ( 4 4  
These normal coordinates oscillate harmonically in time, with frequencies given by 

1)(1+2)- 

and 

for surface and compression modes of angular symmetry 1, respectively. 5 is the surface 
tension and K the bulk compressibility. Compressional modes have additional radial 
nodal structure, indexed by n. Values of k,, are given by the boundary condition 6p(Ro) 
=0, for example k, ,  = n / R o .  The restoring force for surface modes is provided by the 
surface tension 5, which opposes surface deformation, and for compressional modes by 
the bulk compressibility K .  Generally the surface modes lie lower in energy than 
compressional modes, as illustrated by the ratio of lowest surface mode, the quadrupole 
1 = 2 ,  to the lowest compressional mode, the breathing mode with 1=0 and n= 1:  

where bsurf=4nri[  and bcomp=(Kpo)-l =u,2mHe. (Note that R o = r O N 1 / 3 . )  For helium, 
the bulk values of the speed of sound u, = 238 ms- and surface tension ( = 0.274K A - 2 ,  

yield 068 for the ratio bsurf/bcomp, resulting in 0.10 for the ratio of lowest surface to 
lowest compression mode at  N = 720 particles. Despite the very low compressibility of 
helium, this ratio is similar to the corresponding values for very different materials such 
as water (0.08) and nuclear matter (0.1 3), because the surface tension is also very low for 
helium. 

As demonstrated in $4.2, the quantum analogue of the LDM gives significantly 
lower excitation energies. However, the classical LDM predictions provide useful 
qualitative understanding of the collective modes and, being analytic, have also lent 
themselves to a number of quantum-statistical treatments of finite-temperature 
properties. These will be discussed in 0 5.1. 

4.2. Quantum liquid-drop model 
The QLDM was developed by Krishna and Whaley (1990a,b) to describe 

compressional excitations of liquid-helium clusters. Instead of deriving a wave 
equation with boundary conditions imposed by the sharp liquid-drop surface, as is 
done in the classical model, the quantum approach starts from the Bose quantum fluid 
Hamiltonian description of the cluster and expands the quantum density functional 
about the ground-state density (Krishna and Whaley 1990b): 

HCpI = WoI + b o m , e  4(rl, r2)6p(r1)6p(r2) d3r1 d3r2. (4.6) 
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Applying the boundary condition 

Fp(r = R,) = 0, (4.7) 

expanding in spherical harmonics and applying hydrodynamic continuity lead to the 
harmonic expansion 

where pImn = pOalrnn (see equation (4.2)), vln is a normalization constant and &n are the 
expansion coefficients of the general non-local compressibility +(Il, rz). Employing the 
virial theorem to eliminate 4on then yields the dispersion relation 

where 

Equation (4.9) is the spherical cluster analogue of the Bijl-Feynman result for the 
longitudinal excitations of bulk helium (Feynman 1954): 

(4.1 1) 

where S(k)  is the bulk structure function. Note that the definitions of k differ for the 
cluster and bulk equations. 

Figure 7 shows the excitation energies for l=O, 1 and m =0, for He, with N =20,70 
and 240 (Krishna and Whaley 1990~). The Bijl-Feynman spectrum is shown as a solid 
curve for comparison. The latter shows the characteristic linear phonon dispersion at 
small k,  and the minimum at around k = 2 8,- I ,  which is known as the roton minimum. 
For a given size N ,  the discrete cluster energy levels lie on smooth dispersion curves, 
with the 1 = O  and 1 = 1 levels alternating. The most striking feature is the evolution of 
the dispersion curves with N to approach the bulk longitudinal spectrum. For N =20, 
the spectrum is monotonically increasing with perhaps a hint of a shoulder at k 
= 1 8,- ', but no structure in the roton region. For N = 70 there is now a shoulder at 
k z  1.3 kl, and an incipient minimum at k z  1.8 A-  *. The largest cluster N =240 now 
shows a pronounced roton minimum, at a smaller k than in the bulk, and also shows an 
approximately linear region at small k with slope comparable with that in the bulk. The 
interpretation of the size dependence relies on the significance of the roton structure in 
the bulk spectrum. The Bijl-Feynman result is a faithful representation of the features 
of the experimental dispersion curve measured from neutron scattering, although the 
theoretical energies are too high. In particular, the excitations in the roton region are 
observed to broaden and disappear above the superfluid transition temperature 
(Tilley and Tilley 1986). While the atomic dynamics in the roton collective excitations 
are not well understood in the bulk, they are nevertheless regarded as a signature of 
superfluidity because they are found only in the superfluid state. Thus the finite cluster 
spectra lead to the conclusion that clusters of N > 70 are in a superfluid ground state, 
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I I  . . . .  I . . - . I . - . . I . . . - I . . . . I l  

0.0 0.5 1 . o  1.5 2 . 0  2.5 

Figure 7. QLDM cluster excitation spectra for 1=0 (0 ,  W, A) and I =  l(0, n, A): (O) ,  (0), 
N = 20; (m), (a), N = 7 0  (A), (A), N = 240; -, the Bijl-Feynman spectrum for bulk 
4He. (From Krishna and Whaley 1990c.) 

while the smaller cluster, N = 20, is not superfluid. This predicted onset of fluidity at 
N NN 70 from the elementary excitation spectrum is consistent with the conclusions of 
the finite-temperature path integral studies which will be discussed in tj 5. 

Two important approximations are made in the QLDM, which should be 
mentioned. The first is the sharp liquid surface assumption, and the second is a diagonal 
approximation to the potential energy (Krishna and Whaley 1990b). Quantitative 
analysis shows that the former is quite well justified for helium clusters larger than N 
=20, as might be expected from the profiles in figure 1. The second approximation 
affects the interpretation of the dispersion curves shown above. The QLDM result for 
the compressional excitations implies both radial (n)  and angular (1, rn) symmetry, both 
of which are essential for the derivation of the dispersion relation equation (4.9) 
between the energy and the spherical wavevector kLW However, this dispersion relation 
is an approximation for a finite system since only the angular symmetry is a true 
symmetry of the system. The presence of radial nodal structure results from the neglect 
of off-diagonal coupling which arises from the long-range nature of the non-local 
compressibility &rl, r2). This approximation, essential to the harmonic expansion 
analysis, can be avoided in the excitation operator approach described in § 4.3, in which 
case it leads to a spectrum of energy levels from which evidence of the roton structure 
has to be inferred indirectly from, for example the density of states. 

4.3. Variational approaches 
Variational calculations based on an excitation operator approach to excited states 

have greater generality than the QLDM and are more flexible. In the excitation 
operator approach the excited state is written as 

* e  = F(R)*,, (4.12) 
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66 K .  B. Whafey 

where I), is the ground state and F(R) is some excitation operator to be determined. 
This forms the starting point of a variety of theoretical treatments of excited states, for 
example for the coupled-cluster expansion in quantum chemistry (Bartlett 1989), and 
for the Bijl-Feynman treatment of bulk helium compressional excitations (Bijl 1940, 
Feynman 1954, Feynman and Cohen 1957). When the ground state tjo is known 
exactly, one can obtain a variational bound on the first excited state: 

(4.13) 

but, if !he ground state is itself variational, no variational bound on E exists. 
The situation is different when the excited states have different symmetries from the 

ground state. Now excited states with angular symmetry (1, m) can be obtained 
variationally from excited-state ansatzes derived either from the I =  0 ground state or 
from other f = O  functions: 

tjy) = p W (  R)I)yX. (4.14) 

Here t,bboo) is either the ground state or a ground-state-like function. This has recently 
been exploited to obtain excited surface vibrational states with f=2 (Chin and 
Krotscheck 1992), and for rotationally excited and deformed states of the cluster as a 
whole (McMahon et al. 1993). 

We discuss first the compressional excitation energies for 1=0 which have been 
obtained from action of an excitation operator on variational ground states. Krishna 
and Whaley (1990d) employed a collective operator of the form 

N 

F a  = C ~ X P  ( -aOnT?) jO(kOnTi)  GO(Pi> (4.1 5) 

where both a,, and k,, are treated as variational parameters. For k,, held constant at 
the sharp liquid surface value determined by 

j&&) = 0, (4.16) 

i =  1 

(4.17) 

was shown to yield the QLDM result. The variational approach can also be combined 
with a Gram-Schmidt orthogonalization procedure to obtain successively orthogonal 
excited states. Krishna and Whaley (1990d) applied this to the first four compressional 
excitations of I =  0, beyond which it becomes exceedingly cumbersome. The resulting 
energies are shown in table 3, together with the QLDM and classical LDM estimates of 
these. It is clear that the Krishna-Whaley orthogonalized variational excitation 
operator energies lie consistently below the liquid-drop estimates, although the 
difference between non-variational results and the QLDM (Krishna and Whaley 
1990b)does decrease with increasing size N .  In fact the LDM predicts that all collective 
monopole modes are metastable with respect to single-particle dissociation, that is 

hw + p > 0, (4.1 8) 

where p is the chemical potential (equation 3.8) (Chin and Krotscheck 1992). In 
contrast, the orthogonalized variational energies are bound for all N ,  while the QLDM 
energies only become bound for N = 240, consistent with the improved validity of the 
sharp liquid surface approximation for larger N .  
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Table 3. Compressional excitations for He,,, clusters: KW, variational results of Krishna and 
Whaley (1990d); QLDM, quantum liquid-drop model (Krishna and Whaley 1990b); 
LDM, classical liquid-drop model, equations (4.3) and (4.4) (Krishna and Whaley 1990d); 
CK, variational results of Chin and Krostcheck (1992), obtained with the HFDHE 
potential (Aziz et a!. 1979). KW and QLDM employ the HFD-B(HE) potential (Aziz et a/ .  
1987). 

l n  

0 1  
0 1  
0 1  
0 1  

0 2  
0 2  
0 2  

0 3  
0 3  
0 3  

0 4  
0 4  
0 4  

2 1  
2 1  

Compressional excitation (K) 

Method N=20 N=40 N = 7 0  N=112 N=240 
~ 

KW 
CK 
QLDM 
LDM 

KW 
QLDM 
LDM 

KW 
QLDM 
LDM 

KW 
QLDM 
LDM 

C K  
LDM 

267 
2.80 
6.05 
9.48 

3.9 
13.23 
18.96 

5.6 
15.56 
28.43 

8.1 
19.95 
37.91 

1.71 
2-32 

3.9 
3.68 3.97 

4.93 
7.52 6.24 

5.5 
11-81 

15.04 12.48 

7.6 
17.07 

22.57 18.73 

13.7 
18.73 

30.09 24.97 

1.22 1.03 
1.64 1.24 

2.87 
4.2 1 

3.00 
5.34 4.14 

4.70 
7.76 

10.67 8.28 

6.16 
13.59 

16.01 12.42 

7.80 
1852 

21.35 16.56 

1.20 
098 

Chin and Krotscheck (1990, 1992) have studied the lowest excited states derived 
from DMC second-order ground-state densities. They employ the general formula 

with F given as a sum of one-particle operators: 
N 

F =  2 fi-(fi>. 
i =  1 

This is used to obtain the eigenvalue equation for excited states, 

H,u(r)=hco dr’S(r, r’)u(r’), s 

(4.19) 

(4.20) 

(4.21) 

where 

w= cP1(r)11’2fw> (4.22) 

S(r, r’) is the static structure function, pl(r) is the single-particle density and H ,  is anon- 
local kinetic energy operator (Chin and Krotscheck 1990). The one- and two-particle 
densities required to evaluate S(r, r’) are estimated from the second-order approxim- 
ation, equation (3.15). Equation (4.21) is then solved for the excited states 1 resulting 
from a partial wave expansion. Results for the monopole (1 =0) and dipole (1  = 2) modes 
are also listed in table 3 and show that the 1 = O  excitation is very close to the Krishna- 
Whaley variational result. The dipole excitation lies somewhat lower in energy, as 
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68 K .  B. Whaley 

expected for surface vibrations from the LDM analysis (04.1). The surface nature of this 
mode is also evident from the transition density p,(r) = ($ol/il$e) which shows 
structure in the surface region (Chin and Krotscheck 1990). 

The construction of excited states with non-zero 1 poses interesting interpretation 
problems, because these can occur in all three types of excitation, namely com- 
pressional, surface and overall rotation. Despite the use of a variational technique, the 
nature of the 1 # O  mode obtained will depend strongly upon the restrictions placed by 
the choice of excitation operator F(R). Thus, while the surface excitations were 
obtained by Chin and Krotscheck (1990, 1992) with a sum of single-particle operators 
depending on the distance from the centre of mass (equation 4.20), it is possible to 
obtain quite different excitations with lower variational energies by taking F in  another 
approach: a sum of two- or higher-particle functions. This has recently been exploited 
to study rotationally excited states for both helium and molecular hydrogen clusters 
(McMahon et al. 1993). 

The approach of McMahon et al. (1993) differs from the original excitation 
operator approach of Feynman in that the excitation function F(lm)= xlm is of fixed form 
while the remaining factor, $b =$boo), need not describe the ground state. Instead, t& is 
optimized to obtain the variationally optimal energy for the lowest state of angular 
symmetry lm: 

$lm = (4.23) 

t& is taken to have the same parametric form as the true ground state I)~. The role of zlm 
is therefore to impose the lm symmetry for a given type of excitation, in this case of 
overall rotation. Applications have been made for states with m=l, noting that, in the 
absence of a magnetic field, all 2l+ l m  states are degenerate. A simple function for 
rotational excitations is given by the symmetrized sum of two-particle diatomic 
functions: 

(4.24) 

(4.25) 

which is an eigenvector of total angular momentum L, that is 

P X l 1  = l ( 1 t  l)h2Xu, 

L X I I  = l Z f i X l 1 .  (4.26) 

Note that &(rij) is simply proportional to the spherical harmonic &(Oij, 4ij).  Thus the 
excited state 

* l I  = Xll*O (4.27) 

has a clear physical interpretation of a permutation symmetrized sum of overall 
rotation due to relative angular momentum introduced by pairs of particles. This form 
is restricted to even L. An improved variational ansatz is provided by the function 

j + i  j +  i  
(4.28) 
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in which the collective coordinates X and Y bear a formal similarity to the two-particle 
coordinates x and y in equation (4.25). Since Xi is proportional to x i  - X , ,  likewise for x), equations (4.28) may be interpreted as a permutation symmetrized sum of relative 
angular momentum of all particles about the cluster centre of mass. The function can be 
viewed as derived'from the one-particle function ( x i  + iyJ' by making it translationally 
invariant and then symmetrizing it. One can verify that equation (4.28) possesses the 
eigenvalues given in equation (4.26) and is therefore a valid trial wavefunction. 
Although these are now complex wavefunctions, Monte Carlo evaluation of the 
ground-state energy is no more complicated that for real functions. In practice the 
energy, and other quantities of interest, can be obtained from either the real or 
imaginary parts of the wavefunction. 

Figure 8 shows VMC contour plots for He, of the density distribution function 
p(z, r),  where z is measured along the axis of rotational quantization and r is the two- 
dimensional radial coordinate in the x-y plane. The monotonically decreasing 
spherical density seen for 1=0 is increasingly distorted as 1 increases, first to oblate 
shapes still with diffuse, monotonically decreasing density, and later to toroidal shapes 
as a depression near r = O  sets in. This kind of distortion with increasing rotational 
excitation is qualitatively similar to the distortions of classical liquid droplets studied 
by Chandrasekhar (196S), summarized in figure 9. One significant difference, however, 
is the density expansion. Detailed analysis shows that for the diffuse surface quantum 
droplet this occurs both in the x-y  plane and to a lesser extent in the z direction. The 
classical sharp-surface droplets show an expansion only in the x-y plane and show a 
marked compression in the z direction (figure 9). The smooth shape of the surface 
region showing only the oblate distortion and not an average spherical shape confirms 
that these are indeed overall rotational states of the cluster, as opposed to the localized 
surface vibrations studied by Chin and Krotscheck (1990, 1992). 

Figure 10 shows the corresponding contour plots for (H2),. Here a similar general 
trend of expansion and oblate distortion with increasing 1 is seen, but there are 
important quantitative differences imposed by the greater degree of rigidity of this 
system. While there is also expansion in the x-y plane, it is not so pronounced and, as in 
classical systems, there is now a compression rather than an expansion in the z 
direction. The ridge of maximum density for l =O,  absent in He,, is significantly 
distorted in the larger 1 states, with a symmetry breaking to form a high-density region 
located on or close to the z axis, while the lower part of the ridge near the x-y plane is 
essentially dispersed radially to form a very diffuse low-density extension in and about 
the x-y plane. This is consistent with a large centrifugal distortion of a ring of atoms in 
the equatorial plane, and a much smaller centrifugal distortion of a smaller number of 
atoms located close to the z axis away from the x-y plane. It therefore supports the 
conjecture made for the 1=0 structure, that there is a significant contribution of 
pentagonal bipyramidal-like structures to (H2),. 

Analysis of the VMC energetics reveals that all these rotationally excited states for 
He, are metastable with respect to dissociation to He, + He, while, for(H,),, states with 
I > 5 become metastable. Similar conclusions are reached with fixed-node DMC 
calculations using these variational functions as trial functions. The DMC second- 
order density contours show the same kind of distortions as the VMC contours in 
figures 8 and 10, with somewhat larger distortions for He, at a given value of I 
(McMahon et al. 1993). 
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Distance from z-axis ( ) 

( c )  

Figure 8. Contour plots for the density distribution p(z, r )  for He, rotationally excited states: (a) 
/=2 ;  (b) 1=4; (c) 1=6. p is the two-dimensional radial coordinate in the x-y plane 
perpendicular to the z axis of quantization. (From McMahon et al. 1993.) 

Figure 9. Shape distortions of a rotating classical liquid drop as a function of increasing 
rotation velocity from curves 1 to 7. OT, denotes the two-dimensional radial coordinate in 
the x-y plane perpendicular to the z axis of rotation. (From Chandraskhar 1965.) 
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Figure 10. Contour plots for the density distribution p(z, r) for (H2), rotationally excited states: 
(a) I =  2; (b) 1 = 5; (c) 1 = 7. p is the two-dimensional radial coordinate in the x-y plane 
perpendicular to the z axis of quantization. (From McMahon et al. 1993.) 

4.4. Low-lying excitations from the random-phase approximation 
Casas and Stringari ( 1  990) have extended the mean-field density-functional 

approach to a self-consistent calculation of collective excitations within the random- 
phase approximation (RPA). The RPA provides a good description of long-range 
correlation and has been used successfully to treat phonons and ripplons in bulk 4He 
(Krotscheck et al. 1987), as well as collective phenomena (giant resonances) in atomic 
nuclei (Bertsch and Tsai 1975, Liu and van Giai 1976). They use the Green function 
formulation of RPA (Bertsch and Tsai 1975) in which the particle-hole Green function 
is given by solution of the integral equation 

G R P A ( ~ ~ ,  1 2 9  o)= Go(ri9 r29 0) + Go(ri, 13, m)vph(r3, r4)GRpA(r4, r i ,  w)dr, dr,, (4.29) s 
where Vph is the residual particle-hole interaction given by 

and Go is the Hartree-Fock Green function 

(4.30) 

(4.3 1) 

Self-consistency derives from taking the energy function E,(p) to be the same 
interaction energy functional used for the ground-state Hartree-Fock solution 
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(Stringari and Treiner 1987). The particle-hole Green function is also a density-density 
correlation function (Doniach and Sondheimer 1974, Bertsch and Tsai 1975) and its 
poles yield the excited vibrational states. In practice, equation (4.32) is solved in 
coordinate space as a separate matrix equation for each Irn after making a multipole 
decomposition in spherical harmonics (Casas and Stringari 1990). The response 
function 

X d W ( =  .f*(rl)GRP,4(rl~ r2? W)f( r2 )d r1  d r 2  (4.32) s 
is then evaluated by quadrature for a given excitation operator 

(4.33) 

The excitation energies are then given by the poles of xF(w). The relationship between 
this density-functional-RPA theory and the variational approach of the previous 
section has been discussed by Chin and Krotschek (1992). 

This RPA analysis was used to evaluate the lowest vibrational excitations of 4He, 
clusters as a function of size. Figure 11 summarizes the size dependence of the L = 0 
monopole compression mode and of the L = 2 quadrupole surface modes. Both modes 
show a clear convergence to the classical LDM limits by Nz728  and indicate that 
deviations from the LDM are important up to N z 5 0 0  for compression and up to 
N % 100 for surface modes. Like the variational results, the RPA excitation energies 
also lie consistently below the LDM. However, they do lie significantly above the 
zeroth-order Hartree-Fock estimates, showing the increasing importance of in- 
corporating the long-range density correlations in the excited state as N increases, 
whether this is done by RPA or by appropriate choice of variational wavefunction. A 
detailed quantitative comparison of the RPA and variational results for the lowest 
monopole and quadrupole excitations has been given by Chin and Krotscheck (1992). 

The transition densities between ground state 10) and excited state In) given by 

(4.34) 

can also be obtained from the Green function, via the relation 

Pdr) = GRPA(r, r’)f(r’) dr’. (4.35) s 
The RPA results for these show the characteristic behaviour expected of vibrational 
modes. Thus the monopole density has a single maximum in the cluster interior and no 
nodes, while the quadrupole surface density has oscillations about a single node in the 
surface region. 

5. Finite-temperature studies 
The previous sections have dealt exclusively with the properties of isolated 

eigenstates and have been primarily concerned with ground-state T = 0 behaviour. 
Although the temperature of the gas-phase He, and (HJ, clusters is not well 
characterized, it is expected on experimental grounds to be about 0.4K for He, 
(Bucheneau et al. 1990) and about 6 K  for (H2), (Knuth et al. 1990, Goyal et al. 
1992b). Since this is of the same order of magnitude as the rotational and vibrational 
excitations for He,, it is important to analyse the effect of temperature on the cluster 
properties. This has been approached in two ways. The first approach, summarized in 
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2 -  
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LDM . . t-0 
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- ‘/3 
N o n N  SCALE 

(4 

Figure 1 1. RPA excitation energies for He, as a function of size N for (a) the f = O  compression 
mode and (b) the 1 = 2 surface mode: (- - -), the LDM predictions; ( * ), Hartree-Fock (HF) 
results. (From Casas and Stringari 1990.) 
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5 5.1 below, is to use statistical models built upon the classical LDM excitations. The 
second approach is to make a microscopic calculation of the thermal density matrix, 
using path integral techniques, and then to use this to evaluate thermal averages of 
interest. Path integral calculations for quantum clusters are described in 9 5.2. 

5.1. Statistical descriptions 
This approach has been adopted by Stringari and co-workers to study several 

thermal properties of both 4HeN and 3He,. Brink and Stringari (1990) use an LDM 
estimate of about 300 surface vibrational states below the first L=O, monopole 
compression mode for a cluster with n= lo6 atoms (Stringari 1991) as justification for 
building a model of the density of states of 4He, based only upon the surface 
vibrational modes. The results of § 4 indicate that this approximation would probably 
not be valid within a quantum treatment because the compressional modes lie lower in 
energy. By analogy with the bulk, these quantized surface modes are referred to as 
‘ripplons’, although the quantization here is that of a classical wave on a finite cluster. 
Employing the LDM excitation energies yields a density w(E) of states for 4He, in the 
microcanonical ensemble: 

with as determined by the 4He surface tension. For 3He, below its Fermi energy Tf 
= 4.5 K, o(E) is approximated by the Bethe formula for a degenerate Fermi gas, which 
has quite a different energy and size dependence: 

These densities of stater can be used to derive heat capacities, and the evaporation and 
hence cooling rate of the clusters, using the Weisskopf evaporation formula 

where o is the collision cross-section of an atom with an N - 1 cluster, approximated by 
the classical value nRz  with R the cluster radius, and g is the spin degeneracy of the 
evaporated particle. This gives cooling rates of about 109s- at  T = 1 K, with the 4HeN 
rate being somewhat higher than the 3He, rate. For large clusters the 4HeN rates are 
predicted to be independent of size and result in a final temperature of about 0.3 K after 
a time t x s, in agreement with other estimates of experimental temperatures 
(Buchenau et al. 1990). 

Pitaevskii and Stringari (1990) have further considered the effect of surface 
vibrations (‘ripplons’) on the superfluid behaviour of 4He, clusters. A quantitative 
estimate of the extents of superfluidity in both macroscopic and finite systems may be 
obtained from the deviation of the moment of inertia 1, from its rigid value IriK This 
defines the normal (non-superfluid) fraction pn, which is the complement of the 
superfluid fraction ps in the bulk two-fluid picture, as 

(5.4) Pn 1, 
P Ir ig ’  

--- - 

with 
P“ = P - P s .  (5.5) 
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Structure and dynamics of quantum clusters 77 

The quantum-mechanical moment I,, of inertia, can be defined in terms of the response 
to slow rotation about an axis passing through the centre of mass: 

The angular brackets indicate a thermal average over all states populated at 
temperature T ,  and the zz  component of I ,  is understood. For a spherical system, 
Zrig = $ M N (  r 2 ) .  Explicit calculation including only the LDM surface states yields a 
low-temperature approximation for the normal density: 

which has a different temperature dependence from the bulk result (Wilks 1967) 

Figure 12 a compares the normal fraction as a function of temperature for two different 
cluster sizes, with the bulk behaviour. The superfluid component is seen to be depressed 
in the finite systems relative to the bulk, just as was seen in the simpler calculations of 
the zero-momentum component in a confined gas of non-interacting bosons (Krishna 
and Whaley 1991b). This is also seen in the path integral results discussed in $5.2.  
Pitaevskii and Stringari (1 990) have additionally considered the dependence of pn on 
the rotation frequency and predict that, at a critical frequency 

W , , = ~ . I N - ” ~ K ,  (5.9) 
there will be a condensation of surface phonons, accompanied by a permanent 
deformation and destruction of superfluidity. 

5.2. Path integral studies 
The first path integral calculations for quantum clusters were carried out by 

Cleveland et al. (1 989), who made path integral molecular dynamics simulations for 
clusters of 4He, ( N =  57, 120 and 270) at T = 3 K ,  with exchange effects neglected. Bulk 
studies have shown that exchange has little noticeable effect on structural or dynamical 
quantities above T z 2  K (Ceperley and Pollock 1986), and omitting this greatly 
simplifies path integral computations. Since the clusters can evaporate at finite 
temperatures, the calculations were carried out in a confining spherical box and 
resulted in an equilibrium between a central liquid region which was defined to 
constitute the cluster, and a surrounding vapour region of lower density. This gives rise 
to some ambiguities, as discussed by Scharf et a / .  (1992a). Cleveland et al. (1989) 
computed thermal averages of structural and energy properties for the liquid clusters. 
The results are generally comparable with the T =0 QMC studies, with radial density 
distributions being more diffuse and the clusters being energetically more weakly 
bound than at T=O. An interesting structural correlation here is that the transition 
from pachydermous (6p/6p0 < 0) to leptodermous (6p/6p0 > 0) behaviour mentioned in 
$ 3.4, is moved to higher N at finite temperatures, reflecting the increased diffuseness. 

Path integral Monte Carlo calculations for 4He, which incorporated full quantum 
exchange were subsequently carried out by Sindzingre et al. (1989). These workers 
developed two path integral estimators for the deviation of the quantum-mechanical 
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Figure 12. (a) Normal fraction in He, as a function of Tcalculated from the LDM of surface 
excitations for N =  100 and N = 1000. (From Pitaevskii and Stringari (1990.) (6) Normal 
fraction in He, as a function of Tcalculated from path integral studies for N = 64 (0) and 
N=128 (0). (From Sindzingre et al. 1989.) 

moment I Q  of inertia (equation 5.6) from its classical value. The first is the expectation 
value of the square of the surface area enclosed by the Feynman paths projected on to a 
plane perpendicular to the rotation axis. The second, more direct estimate is the 
probability that the projection of the angular momentum L on the axis has the value nh. 
These averages require the path integral representation of the density matrix, including 
summations over all particle permutations, and this is evaluated using a generalized 
Metropolis sampling algorithm. As a result of incorporating particle exchange, these 
become extremely time-consuming calculations at  low temperatures (e.g. 200 central 
processing unit h on an IBM 3090/200 E with attached vector processors at T=0.5 K). 
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Structure and dynamics of quantum clusters 79 

These workers adjusted the size of the confining spherical box to avoid having any 
atoms in the vapour. Figure 12 b shows the calculated normal fluid fraction as a function 
of temperature for two different cluster sizes: N = 6 4  and 128. The depression in 
superfluid component relative to the bulk is again apparent, just as in the LDM- 
derived result of Pitaevskii and Stringari (1990) (figure 12 a). It also appears that the 
superfluid transition temperature which corresponds to the onset of a decrease in pn, is 
displaced to a lower temperature. This is confirmed by calculation of the heat 
capacities, which show rounded peaks displaced to lower temperatures as N decreases 
(Sindzingre et al. 1989), in accordance with the predictions of finite-size scaling 
(Ginzburg and Sobyanin 1976). These observations of finite superfluid fractions in 
finite-temperature calculations for clusters as small as N = 64 are in good agreement 
with the estimate of a minimum size N z 70 for superfluidity made from the scaling of 
the excitation spectrum (§ 4.2) (Krishna and Whaley 1990a, b). 

In the Feynman path integral representation, superfluidity is related to the 
occurrence of long paths which involve several permuting atoms (Pollock and Ceperley 
1987). Sindzingre et al. (1989) used the probability that an atom is part of a permutation 
cycle involving several (six) atoms as a measure of superfluidity to analyse the spatial 
dependence of the superfluid density. They found that the superfluid density does drop 
to zero at  the cluster surface, as expected from bulk considerations (Wilks 1967), but is 
nevertheless large near the surface region. Sindzingre et al. (1991) have also used this 
criterion to examine the propensity for superfluidity in small clusters of p-(H,),. For 
N = 33 the fraction remains low over the entire temperature range studied, 1G1 K. For 
smaller N ,  the fraction of the radial density profile due to such permutation cycles 
increases significantly as the temperature decreases. The behaviour of this fraction with 
decreasing N at a given temperature might be expected to depend both on the 
competing effects of more liquid-like behaviour associated with a lower melting point 
and, by analogy with 4He,, on a minimum size requirement. While too few clusters 
were studied to clarify this, it was noted that N = 13 had a lower such fraction than 
N = 18, although this could also be associated with the highly stable icosahedral 
structure at this size. The size dependence of this fraction is generally consistent with the 
path integral estimate of the normal fluid fraction for these clusters, which decreases to 
values significantly below unity for N = 13 and 18 while, for N = 33, only a very small 
decrease is seen. Detailed analysis of the difference between N = 13 and 18 is not possible 
however, because of the large statistical error in this quantity. It is nevertheless noticeable 
that the decrease in the normal fraction for a given size starts at a higher temperature than 
found for the 4He, clusters, indicating a higher superfluid transition temperature for H,. 
This is entirely consistent with the predictions made on the basis of the Bose-Einstein 
condensation temperature (4 1) (Ginzburg and Sobyanin 1976). 

More extensive structural studies have been carried out for molecular hydrogen 
clusters by the path integral Monte Carlo technique without exchange (Scharf et al. 
1992a, b). As noted above, this greatly simplifies the calculations and allows a more 
detailed and better converged analysis. Any quantum effects are then entirely due to the 
zero-point motion which accounts for residual positional permutations of particles 
seen at T z 2 K .  However, the omission of exchange for H, is only negligible above 
Tz2 .5  K (Sindzingre et al. 1991), and so the conclusions of these studies are restricted 
to this and higher temperatures. All calculations are carried out with the spherical part 
of the H,-H, potential only. Scharf et al. (1992a, b) use averaged quantities such as the 
pair distribution function g(r), radial density profiles and average r.m.s. displacements 
dr,m,s, together with examination of individual contributing structures, to characterize 
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the p-(H,), clusters as quantum liquids for T < 6 K, above which they are unstable with 
respect to evaporation. This characterization is based primarily upon the magnitude of 
ijr,m,s, (Scharf et al. (1992b) use C3r., ,s ,  > 15% for a quantum liquid). The quantum-liquid 
phase exhibits many spatial permutations involving three or more molecules even 
without exchange permutations. Most interesting is the systematic observation of 
instantaneous high-symmetry fivefold structures at T z 2.5 K, which are based upon 
pentagonal bipyramidal and icosahedral cores. These well ordered configurations 
appear in all size clusters but do not dominate the long-time average structures of any 
cluster size. As noted in 93.2, a large contribution of structures with approximate 
fivefold symmetry is also observed in the T=O structures of (H& (pentagonal 
bipyramid), although these only constitute a fraction of the extensively delocalized 
quantum liquid ground state (McMahon et al. 1993). Scharf et at. (1992a) note that 
these high-symmetry structures appear to be stabilized by the presence of additional 
outer shells, which lead to smaller fluctuations and increasingly rigid cores for larger N. 
This may be the origin of the reduced superfluidity in N = 33 (Sindzingre et al. 1991) and 
can be regarded as causing a gradual transition from a quantum liquid to a quantum 
solid phase as a function of N ,  with the solidification proceeding from the cluster centre 
outwards. 

In contrast with the behaviour of P-(H~)N, the isotopic analogues o-(D,), appear 
much more localized and show a decrease in C3r,m,s. from values of about 0 3  at T = 6 K, 
to values less than 0.1 below T = 4 K  (Scharf et al. 1992b). This is interpreted as 
indicating a phase transition from a quantum liquid to a quantum solid, by analogy 
with previous quantum and classical simulations for Lennard-Jones clusters (Beck 
et al. 1989). 

Scharf et al. (1993) have recently extended the path integral Monte Carlo method to 
the study of impurities in molecular hydrogen clusters and have analysed the structure 
of lithium impurities in p-(H,), . These studies indicate that the lithium lowers the range 
of stability of the clusters, which now evaporate H, at lower temperatures. The lithium 
atom is situated either outside the cluster or at the cluster surface and has little effect on 
the interior liquid-solid behaviour. The spectral properties of these impurities are of 
prime interest, just as with the molecular impurities discussed in $82 and 3. Scharf et al. 
(1993) find that the ionization potential of lithium is red shifted in the clusters, and that 
the absorption spectra are distorted and blue shifted, with both shifts increasing as the 
cluster size increases. 

5.3. Scattering of quantum clusters 
Despite the experimental attention focused on scattering studies of helium clusters, 

little theoretical work has addressed either scattering or absorption of foreign particles 
by quantum clusters. This reflects the lack of knowledge of the cluster excitations and 
should change as these become better characterized with the techniques described in 
previous sections. The only theoretical study of scattering from helium clusters to date 
was performed by Eichenauer et al. (1988) for helium scattering from helium clusters, 
employing the classical macroscopic LDM for the cluster surface excitations (9 4.1). 
Using a distorted-wave Born approximation and neglecting exchange between the 
incoming helium and the cluster atoms, they calculated vibrationally inelastic cross- 
sections for surface excitations ofclusters containing between 10 and 1000 atoms. These 
are of order 100A2, decreasing at higher energies, and they show pronounced 
oscillations. Some oscillations were assigned to diffraction interference effects and 
others to orbiting resonances. Eichenauer et al. (1988) also investigated the elastic and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Structure and dynamics of quantum clusters 81 

absorption cross-sections for several absorption models: hard- and transparent-core 
clusters, completely absorptive and optical potential models. These cross-sections are 
larger, typically lo3 or 104A2, and also show oscillatory behaviour as a function of 
energy, although to a lesser extent than the vibrational cross-sections. Generally these 
cross-sections were found to depend only weakly upon cluster size N ,  in the range 
N = 100-1000, 

A major problem in such scattering studies is the projectile-cluster interaction 
potential. For very large clusters, direct summation over all cluster components is 
impractical, and various approximations have therefore been developed. The study of 
Eichenauer et al. (1988) used two different models. The first is a hard-core model in 
which the helium-cluster potential is obtained by integrating over a sphere of uniformly 
distributed Lennard-Jones 6- 12 potentials. This ignores the cluster internal structure. 
The second model matches a long-range attractive term, obtained by integrating over 
a sphere of homogeneously distributed - C,/r6 potentials, to a constant negative 
potential in the cluster interior. This transparent-core model therefore also neglects the 
cluster structure. It is clear that either explicit summation or more realistic potential 
models are required to deal with internal cluster excitations such as compressional 
modes. 

Scattering of high-energy particles will also involve dissociation of the excited 
clusters. This is the case with electron scattering at energies of about 20eV (Martini 
et a / .  1991) as well as at the higher energies (about 50eV) used in mass spectrometer 
sources (Buchenau et a / .  1990). Electron scattering has yielded estimates of the 
electronic surface barrier potential (Martini et al. 1991). The contributions from 
charge-transfer processes and the proliferation of electronic dynamical channels 
involving metastable species causes the interpretation of such experiments to present a 
considerable challenge to theory. A further challenge, which is also increasingly 
becoming an experimental reality, is the scattering of atoms and molecules from 
clusters to which other foreign species have already been attached. Understanding the 
scattering behaviour from the pure clusters is a prerequisite for this more complex 
dynamical situation in which there may be strong effects of the quantum ‘solvent’ on the 
molecular collision dynamics. 

6. Conclusions 
In this review we have summarized the theoretical studies made of quantum clusters 

in the past 15 years, giving also a brief review of the experimental advances in this field. 
Considerable progress in understanding pure clusters of helium has been achieved, and 
a significant start has been made on the study of foreign molecules attached to helium 
clusters. All these studies, with some modifications, apply also to clusters of molecular 
hydrogen, which have not received as much attention. The current focus of both 
experimental and theoretical efforts on spectroscopic studies of attached molecular 
species promises to yield useful information on the structural and, eventually, also on 
the dynamical properties of these clusters. However, it is clear that much more analysis 
and computational study is required in order to provide adequate explanation of 
existing experimental studies of molecular pick-ups. The study of scattering and 
dissociation processes has barely been addressed. Another significant area requiring 
new theoretical input is that of electronic excitations of these clusters. Electron 
bombardment and the subsequent energy transfer and dissociation processes play an 
important part in mass spectrometry studies and yet are poorly understood at best. 
Synchrotron sources have recently been utilized to obtain fluorescence spectra of He, 
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which show very different behaviour from the clusters of the heavier rare gases (Joppien 
et al. 1993). More generally, the structural changes resulting from the attachment of 
ionic species to the clusters need to be considered, particularly since these are usually 
easier to study experimentally than neutrals. Theoretically, it will be necessary to take 
into account the strong localization and polarization forces of ionic species, which are 
usually associated with a ‘snowball’ type of structure in bulk helium (Benneman and 
Ketterson 1976). 

With these challenges still ahead, the study of quantum clusters clearly offers many 
possibilities for the investigation of chemical and physical properties of very weakly 
bound atomic and molecular aggregates. Many of these will be addressable by the 
methods summarized here. 
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